Modeling Proppant Transport Through Perforations in a Horizontal Wellbore

TitleModeling Proppant Transport Through Perforations in a Horizontal Wellbore
Publication TypeJournal Article
Year of Publication2019
AuthorsWu, C-H., and M. M. Sharma
JournalSPE Journal
Volume24
Issue04
Start Page1777
Pagination1777-1789
Date Published08/2019
ISSN1086-055X
Other NumbersSPE-179117-PA
KeywordsFracture modeling, Hydraulic Fracturing, Proppant Placement
Abstract

Proppant placement plays a crucial role in ensuring that the conductivity of fractures is maintained after a hydraulic-fracturing treatment. The process involves the transport of suspended solids in a liquid, usually a water-based fluid, from the wellbore through perforations and finally into fractures. Many studies have focused on proppant settling and transport in fractures, but relatively few studies have investigated the proppant transport process in a wellbore through perforations. This paper addresses the important issue of proppant transport through perforations using a novel numerical technique. The objective is to evaluate the efficiency of proppant transport in a perforated horizontal well under different suspension flow conditions.

In this paper, proppant transport through a perforated horizontal casing is modeled using a coupling of computational fluid dynamics and the discrete element method (CFD-DEM). Reasonable agreements are found between the modeling results and published experimental data. Furthermore, the effectiveness of proppant transport through a perforation is evaluated by the particle transport efficiency (Ei), which is defined as the mass fraction of particles transported through a perforation relative to the total mass of particles in the wellbore upstream of the perforation. The effects of casing diameter, proppant size, proppant density, proppant concentration, fluid-flow rate, fluid rheology, perforation size, and perforation orientation on Ei are investigated.

The simulation results show that proppant inertia strongly influences proppant transport into a perforation. The proportion of proppant that goes into a perforation is typically much different than the proportion of fluid that goes into the same perforation. This results in an increase in the proppant concentration in the slurry as the slurry flows from the heel to the toe side of a plug-and-perforate stage. Results and models presented in this paper provide directions to quantify and potentially control proppant distribution in perforation clusters in horizontal wells.

DOI10.2118/179117-PA